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Abstract

Using duality, we reformulate the asymmetric variational inequality (VI) problem over a conic region as an optimization
problem. We give sufficient conditions for the convexity of this reformulation. We thereby identify a class of VIs that includes
monotone affine VIs over polyhedra, which may be solved by commercial optimization solvers.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

The variational inequality (VI) problem has engaged
members of the optimization, mathematics, transporta-
tion science, engineering, and economics communi-
ties. Given a set K ⊆ Rn and a mapping F : K →
Rn, the VI problem, denoted VI(K, F), is to find an
x∗ ∈ K such that

F(x∗)′(x − x∗)�0 ∀x ∈ K . (1)

VIs, first introduced by Stampacchia and his collab-
orators [18,19,23,27,28], subsume many other well-
studied mathematical problems, including the solution
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of systems of equations, complementarity problems,
and a class of fixed point problems. In addition, for any
optimization problem over a closed, convex feasible
region, the first-order optimality conditions comprise
a VI. Accordingly, the VI problem also generalizes
convex optimization.

For a complete discussion and history of the VI
problem and associated solution methods, we refer the
interested reader to the recent survey text by Facchinei
and Pang [12] and the monograph by Patriksson [24].
The survey article by Harker and Pang [16] and the
Ph.D. thesis of Hammond [15], as well as the refer-
ences therein, also provide insightful reviews of the
VI problem and associated algorithms.

One class of techniques for solving the VI problem
exploits the fact that the Karush–Kuhn–Tucker (KKT)
conditions of a VI comprise a mixed complementarity
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problem (MiCP), involving both equations and non-
negativity constraints. One may solve these KKT con-
ditions using interior point methods.

In contrast, instead of reformulating the VI problem
as a system of equations and inequalities, other con-
tributors to the VI literature have suggested reformu-
lating the VI as an equivalent optimization problem.
Most simply, it is well known (see, e.g., [12, Theorem
1.3.1]) that if the Jacobian of F, denoted by JF(x), is
symmetric ∀x ∈ K , then there exists a function f :
K → R such that

∇f (x) = F(x) ∀x ∈ K .

If, in addition, K is closed and convex, then x∗ solves
VI(K, F) iff it is a stationary point of

min
x∈K

f (x). (2)

When F is furthermore monotone over K, or equiva-
lently, when its Jacobian matrix is positive semidef-
inite over K, the resulting optimization problem (2)
is convex, and x∗ solves VI(K, F) iff it is an optimal
solution of (2). Depending on the exact form of this
convex program, one may apply any of a number of
commercial solvers, including ILOG CPLEX, ILOG
Solver, Xpress-MP, and LINDO. Moreover, when F is
affine and K is polyhedral, problem (2) is a linearly
constrained quadratic program (LCQP).

For a VI with possibly asymmetric JF(x), the con-
cept of merit functions provides for the reformulation
as an equivalent optimization problem. For X ⊇ K ,
where X is a closed set, a merit function for VI(K, F)

is defined to be a non-negative � : X → R such that
x∗ solves VI(K, F) iff x∗ ∈ X and �(x∗) = 0. Thus,
VI(K, F) is equivalent to minx∈X �(x). The earliest and
most intuitive merit function, proposed by Zuhovickii
et al. [34] in the context of game-theoretic equilib-
rium computation, is the classical primal gap function,
given by

�gap(x)� sup
y∈K

F(x)′(x − y). (3)

This gap function and other more sophisticated merit
functions give rise to specialized iterative descent
methods for their minimization and, as a consequence,
for the solution of the VI problem.

1.1. Complexity of VI algorithms and VI solver
availability

While the favored reformulations and associ-
ated algorithms for the VI problem have proved
to be practically useful, they are not without
drawbacks. For instance, the merit function ap-
proach to solving VIs involves an iterative descent
method in which, at each iteration, evaluation of
the merit function and its gradient requires the
computation of a projection onto K. Under certain
conditions, usually involving continuity and some
version of monotonicity, iterative descent methods for
merit function minimization yield limit points that are
stationary points of the corresponding merit-function
optimization problem (see, e.g., [12, Section 10.6]
for an overview). However, even when these require-
ments are met, the iterative descent algorithms may
not converge in finite, let alone polynomial time.

In fact, the topic of complexity is not as often
discussed in the VI literature as in other areas of op-
timization. Most algorithms for VIs are guaranteed
to yield asymptotic convergence, with the excep-
tions of ellipsoid methods [21,22,25], and interior
point algorithms (see, e.g., [17,29–33]). Under certain
conditions, ellipsoid and interior point methods for
VIs ensure polynomial-time convergence. While el-
lipsoid algorithms provide important insights into the
complexity of the VI problem, they are not applied in
practice. Moreover, although interior point methods
can efficiently solve interesting classes of the VI prob-
lem, commercial-grade software packages for these
algorithms are not available to the same extent as are
commercial products for solving general convex QPs
and other convex optimization problems.

Accordingly, to solve instances of the VI problem,
one would ideally like to harness the power of these
industrial-strength convex optimization software pack-
ages. To the best of our knowledge, in the absence
of symmetry of JF(x), the reformulation of a VI as
a single-level, convex optimization problem, which is
many-times continuously differentiable, is not well un-
derstood.

As already noted, the VI literature includes refor-
mulations for problem instances in which F has a
symmetric Jacobian over K. While the merit-function
technique further provides an optimization-based ap-
proach for the asymmetric case, merit functions are
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usually at most once continuously differentiable (see,
e.g., the discussion in [12, Section 10.6], [13, Section
4.2]). More importantly, for almost all merit functions,
evaluation of the function itself requires solution of
an optimization problem, generally involving a maxi-
mization over K. Thus, the merit function approach re-
quires the solution of a bilevel optimization problem,
a form that commercial optimization solvers cannot
handle.

Finally, let us return to the case of a VI problem sat-
isfying the symmetry and monotonicity requirements
ensuring the existence of an objective function f, as in
(2), inducing an equivalent convex optimization prob-
lem. Even in this case, identification of such an objec-
tive function f requires the evaluation, in closed form,
of the indefinite line integral

f (x) =
∮

F(x)′ dx

=
∫ 1

0
F

(
x0 + t

(
x − x0

))′ (
x − x0

)
dt ,

where x0 is any vector in K. This integration is easy if
F is affine. However, if F is nonlinear, and especially if
n, the dimension of the problem, is large, analytically
evaluating such an integral may be impractical. Ideally,
one would like to develop a reformulation of the VI
problem that does not require such preprocessing in
order to generate a convex optimization problem for
input into a commercial solver.

1.2. Contributions of the paper

In this paper, we study instances of VI(K, F) in
which K is a polyhedral or more general conic region.
Our contributions are as follows:

1. Using duality, we reformulate any such VI as
a single-level, and many-times continuously
differentiable optimization problem, even if the
associated cost function has an asymmetric Jaco-
bian matrix. (See Section 2.1.) Our method thereby
avoids the difficulties discussed in Section 1.1.

2. We give sufficient conditions for the convexity
of this reformulation. We thereby identify a class
of VIs, of which monotone affine (and possibly
asymmetric) VIs over polyhedra are a special case,
which may be solved using widely available and

commercial-grade convex optimization software.
(See Section 2.3.)

3. In addition, we note that the VI problem may be
viewed as a special instance of a robust constraint,
and that robust optimization therefore subsumes the
VI problem. (See Section 2.2.)

1.3. Notation

We use the following notation conventions through-
out the paper. Boldface letters denote vectors and ma-
trices, upper case letters signify matrices, while lower
case denotes vectors. We use subscripts to denote el-
ements of a vector or matrix and superscripts to de-
note one entire vector or matrix in a sequence. For a
square, but not necessarily symmetric matrix A, A 	
0 denotes that A is positive semidefinite.

2. Applying duality to VIs

In this section, we apply duality to the VI problem
in order to reformulate it as an equivalent, single-level
optimization problem. We initially focus our attention
on the class of VIs in which K is polyhedral, and we
then extend our results to more general conic regions.
We make no assumptions on the existence of solutions
to the VI problems we consider.

2.1. Reformulation of the VI as a single-level
optimization problem

For K polyhedral, without loss of generality, we may
restrict our attention to standard-form instances,

K = {x ∈ Rn | Ax = b, x�0} 
= ∅, (4)

where A ∈ Rm×n and b ∈ Rm. Rewriting K in standard
form may require parallel changes in F. For instance,
recasting non-positive variables as non-negative ones
requires changes of sign in F, and replacement of free
variables by the difference of non-negative variables
requires augmenting the dimension of F.

We now state and prove a constraint equivalence.

Theorem 1. Suppose that K is the non-empty polyhe-
dron given by (4). Then, x∗ solves VI(K, F) iff ∃�∗ ∈
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Rm such that (x, �) = (x∗, �∗) satisfies

F(x)′x = b′�,

Ax = b,

x�0,

A′��F(x). (5)

Proof. As is well known in the VI literature (see, e.g.,
[12, Section 1.2]), by the definition of the VI problem,
x∗ ∈ K satisfies (1) iff the following relation holds.

F(x∗)′x∗ = min
x

F(x∗)′x
s.t. Ax = b

x�0. (6)

That is, x∗ must itself optimize the linear optimization
problem (LP) (6) it induces. This well-known obser-
vation is credited to Eaves [10], who originally noted
this equivalence in the context of the complementarity
problem.

In LP (6), x∗ is treated as data and x is the vector of
decision variables. Since x∗ in this way parameterizes
LP (6), we refer to this LP as LP(x∗). Its dual, to which
we refer as DLP(x∗), is

max
�

b′�

s.t. A′��F(x∗). (7)

Suppose that x∗ solves VI(K, F). Then LP(x∗) has
bounded optimal value, given by F(x∗)′x∗. By LP
strong duality, its dual, DLP(x∗), is also feasible with
bounded optimal value equal to that of LP(x∗). Let �∗
denote an optimal solution of DLP(x∗). Then (x∗, �∗)
satisfies (5).

For the reverse direction, suppose that (x∗, �∗) sat-
isfies system (5). Then, x∗ and �∗ are primal and dual
feasible for LP(x∗) and DLP(x∗), respectively. Since
F(x∗)′x∗ = b′�∗, by LP weak duality, x∗ must be op-
timal for LP(x∗). Therefore, x∗ solves VI(K, F). �

Remark. Let us note two points relating to Theorem 1.
First, our use of duality to reformulate the VI as a
single-level optimization problem is inspired by the ro-
bust optimization literature’s use of duality (see, e.g.,
[8]) to reformulate a robust counterpart of an optimiza-
tion problem under uncertainty as a nominal problem,
i.e., one involving no uncertainty. We further discuss

the connection between the VI problem and robust op-
timization in Section 2.2.

Second, since the KKT conditions of any LP are
necessary and sufficient for its optimality, x∗ solves
VI(K, F), with K polyhedral, iff there exist KKT mul-
tipliers for which x∗ and these multipliers satisfy the
KKT system corresponding to LP(x∗). This equiva-
lence is well known in the VI literature (see, e.g., [12,
Proposition 1.2.1]). Accordingly, to prove Theorem 1,
rather than using strong duality, we could have used
the KKT conditions of LP(x∗). For such an alternate,
KKT-based proof, see Aghassi [1].

Theorem 1 implies the following equivalence of the
VI with an optimization problem.

Corollary 1. Suppose that K is the non-empty poly-
hedron given by (4). x∗ solves VI(K, F) iff the follow-
ing mathematical optimization problem (MP) has op-
timal value zero and ∃�∗ ∈ Rm such that (x∗, �∗) is
an optimal solution

min
x,�

F(x)′x − b′�

s.t. Ax = b
x�0

A′��F(x). (8)

Proof. To begin, note that ∀(x, �) feasible for MP (8),
x is a feasible solution of LP(x), and � is a feasible
solution of DLP(x). In addition, the objective function
of MP (8) represents the duality gap of this primal-
dual pair of solutions. Consequently, if MP (8) is fea-
sible, by LP weak duality, its objective value is always
non-negative. From this observation and the equiva-
lence proved in Theorem 1, the result immediately
follows. �
Remark. It is worth pausing to note that, if VI(K, F)

has no solution, then MP (8) either is infeasible or has
a strictly positive optimal value. Consider any x∗ ∈
K that does not solve VI(K, F). While we make no
assumptions on the boundedness of K, because K 
= ∅,
there are only two possibilities for LP(x∗). If this LP
is unbounded, then there does not exist a � ∈ Rm such
that (x∗, �) is feasible for MP (8). Otherwise, LP(x∗)
must be bounded but have optimal value strictly less
than F(x∗)′x∗. In this case, ∀� ∈ Rm such that (x∗, �)

is feasible for MP (8), the corresponding objective
value is, by weak duality, strictly positive.
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Corollary 1 establishes that any VI with polyhe-
dral K can always be reformulated as a single-level
optimization problem, even under asymmetry of the
Jacobian matrix of the associated F(x). Thus, any
such problem is always equivalent to an optimization
problem of a format compatible with commercial opti-
mization software, which does not accept constraint or
objective functions that themselves involve opti-
mization problems. Furthermore, the objective and
constraint functions of our reformulation (8) are, in
contrast to most merit functions in the VI literature,
continuously differentiable as many times as F(x)

is. For the affine VI, Corollary 1 implies that this
problem can always be reformulated as a linearly
constrained quadratic program (LCQP).

The equivalence established in Corollary 1 gen-
eralizes the well-known equivalence (see, e.g., [12,
Section 1.5.3]) between the complementarity problem,
i.e., identify x such that x�0, F(x)�0, and F(x)′x=0,
and the optimization problem

min
x

F(x)′x
s.t. x�0, F(x)�0. (9)

Note that this complementarity problem is the special
case of VI(K, F), in which K = Rn+, i.e., the non-
negative orthant. Indeed, MP (8) reduces to MP (9)
when A = 0 and b = 0.

We have thus far considered only polyhedral K. In
fact, we may extend our VI reformulation result to the
more general case, in which K is defined in terms of
an arbitrary cone C ⊆ Rn. In this setting, C may be
a cone other than the non-negative orthant, in terms
of which all polyhedra are defined. Without loss of
generality, consider

K = {x ∈ Rn | Ax = b, x	C0} 
= ∅. (10)

We use the convention that, for any cone C, x	C0
denotes that x ∈ C, and x
C0 denotes that x ∈ int(C),
the interior of C. Let C∗ denote the cone dual to C,
i.e.,

C∗ = {� ∈ Rn |�′x�0, ∀x ∈ C}.
We omit the proof of the following theorem, since it is
analogous to that of Corollary 1. For a review of conic
duality, we refer the interested reader to Ben-Tal and
Nemirovski [5].

Theorem 2. Consider VI(K, F), where K is given by
(10). Suppose the following MP has optimal value zero
and ∃�∗ ∈ Rm such that (x∗, �∗) is an optimal solution

min
x,�

F(x)′x − b′�

s.t. Ax = b
x	C0

A′��C∗F(x). (11)

Then x∗ solves VI(K, F).
Conversely, suppose that x∗ solves VI(K, F), that

∃x ∈ K such that x
C0, and that ∃� ∈ Rm such
that A′�≺C∗F(x∗). Then, MP (11) has optimal value
zero, and ∃�∗ ∈ Rm such that (x∗, �∗) is an optimal
solution.

Let Mm,n ⊆ Rmn denote the space of m × n matri-
ces, Sn ⊆ Rn2

denote the space of symmetric n × n

matrices, and Sn+ denote the self-dual cone of sym-
metric, positive semidefinite, n × n matrices. In addi-
tion, let us define the inner product of X ∈ Mm,n with
Y ∈ Mm,n as

X • Y =
m∑

i=1

n∑
j=1

XijYij ,

where Xij and Yij are the (i, j)th elements of the ma-
trices X and Y, respectively. Setting C = Sn+ in The-
orem 2, we obtain the following corollary, specific to
VIs over subsets of Sn+. Note that, in terms of the no-
tation conventions set forth in Section 1.3 and in this
section, for X ∈ Mn,n, X	Sn+ is a stronger statement
than X 	 0, since the former requires that X is sym-
metric, while the latter does not.

Corollary 2. Consider an arbitrary F : Mn,n →
Mn,n and VI(K, F), where

K =
{

X ∈ Mn,n | Ai • X = bi,

i = 1, . . . , m; X	Sn+0
}

, (12)

Ai ∈ Mn,n, and bi ∈ R, i ∈ {1, . . . , m}. Suppose the
following MP has optimal value zero and ∃�∗ ∈ Rm
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such that (X∗, �∗) is an optimal solution.

min
X∈Mn,n

�∈Rm

F(X) • X − b′�

s.t. Ai • X = bi, i = 1, . . . , m

X	Sn+0
m∑

i=1

�iAi�Sn+F(X). (13)

Then X∗ solves VI(K, F).
Conversely, suppose that X∗ solves VI(K, F), that

∃X ∈ K such that X
Sn+0, and that ∃� ∈ Rm such

that
∑m

i=1 �iAi≺Sn+F(X∗). Then, MP (13) has optimal
value zero, and ∃�∗ ∈ Rm such that (X∗, �∗) is an
optimal solution.

Remark. Note that when

F(X) =
n∑

i=1

n∑
j=1

Xij Gij + H,

where H ∈ Mn,n, and Gij ∈ Mn,n, for i, j ∈
{1, . . . , n}, the objective function of MP (13) is
quadratic in X and �.

2.2. Robust optimization generalizes the VI problem

Before discussing the convexity of our reformu-
lations of the VI, we digress to note an interesting
connection between the VI problem and robust op-
timization. Recall that robust optimization (see, e.g.,
[3,4,7,8,11,26]), comprises a deterministic, worst-case
approach to data uncertainty. In particular, suppose
a vector �̃ of data parameters defining optimization
problem

min
x

f (x)

s.t. x ∈ X(�̃), (14)

where x is the vector of decision variables, is subject to
uncertainty. In the robust optimization framework, we
assume we know only an uncertainty set U of possible
values that �̃ may realize. The robust counterpart of
MP (14) is given by

min
x

f (x)

s.t. x ∈ X(�̃) ∀�̃ ∈ U .

Table 1
Size of the original VI formulation versus that of our single-level
optimization reformulation

Original VI Optimization
reformulation

Variables n m + n

Constraints (m + n) + |K| m + 2n

Although VI(K, F) involves no data uncertainty
whatsoever, for arbitrary K and F, it is in fact a special
instance of a robust constraint. Namely, VI (1) is a
robust constraint in which it is as if x is subject to un-
certainty and known only to belong to K. Accordingly,
the robust optimization framework encompasses the
VI problem.

2.3. Convexity of reformulations

Having reformulated the VI as a single-level opti-
mization problem, we next use this reformulation to
analyze the complexity of the original VI. In particu-
lar, converting the VI into a single-level optimization
problem facilitates certification of polynomial-time
complexity. Indeed, one need not bother proving the
polynomial-time convergence of an algorithm specif-
ically tailored to the VI. Rather, if our proposed
optimization problem reformulation is solvable in
polynomial time (e.g., if it is convex and satisfies
other complexity conditions), then the complexity of
the original VI is polynomial time.

To understand the justification of this result for
the case of polyhedral K, note that if the standard-
form representation of K involves m + n constraints
and n variables, then the size of reformulation (8)
of VI(K, F) is polynomial in m and n. The number
of variables and constraints in this reformulation are
given in Table 1. While our reformulation is in a space
of higher dimension than the original VI formulation,
this increase in size is modest and furthermore allows
the VI to be expressed in terms of finitely many con-
straints (polynomially many with respect to m and n),
rather than infinitely many constraints (when |K|, the
cardinality of K, is infinite). Moreover, one can eas-
ily reduce the dimensionality of the reformulation by
manipulating equality constraints in order to eliminate
redundant variables, as is a standard technique in op-
timization (see, e.g., [9]).
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In the following theorem, we give a sufficient con-
dition for the convexity of reformulations (5) and (8).

Theorem 3. Suppose that K is the non-empty polyhe-
dron given by (4). If Fj (x) is a concave function over
K, ∀j ∈ {1, . . . , n}, and F(x)′x is a convex function
over K, then system (5) defines a convex feasible region
and MP (8) defines a convex optimization problem.

Proof. The result for MP (8) follows immediately
from Corollary 1. If we replace the constraint F(x)′x=
b′� in system (5) with F(x)′x�b′�, we obtain a result-
ing system that is equivalent to (5). The reason is that,
as explained in the proof of Corollary 1, F(x)′x − b′�
is the duality gap of primal-dual pair (6) and (7) and
therefore cannot be strictly negative. Accordingly, the
convexity of the solution set of system (5) follows im-
mediately from Theorem 1. �

Remark. It is worth noting that if K is not, without
reformulation, a subset of the non-negative orthant,
then the concavity requirements on Fj (x) in Theo-
rem 3 may be directly stated as follows. If, ∀x ∈ K ,
xj �0, then the sufficient condition asks that Fj (x) be
concave, as before. Alternatively, if, ∀x ∈ K , xj �0,
then the sufficient condition asks that Fj (x) be convex.
Otherwise, the sufficient condition asks that Fj (x) be
affine.

Returning to our discussion of the implications and
significance of Theorem 3, if VI(K, F) satisfies the
theorem’s conditions, it is equivalent to a convex opti-
mization problem, given by MP (8), and can therefore
be solved by commercial convex optimization soft-
ware. For the affine case, the conditions of Theorem
3 simplify considerably. In particular, when F(x) is
affine, the following equivalence holds. Fj (x) is a con-
cave function over K, ∀j ∈ {1, . . . , n}, and F(x)′x is
a convex function over K iff F is monotone over K.
The reason is that monotonicity holds iff JF(x) 	 0
(see, e.g., [12, Proposition 2.3.2]). Accordingly, any
affine monotone VI is polynomially solvable using
a commercial QP solver applied to a convex LCQP.
In contrast, when F(x) is not affine, the aforemen-
tioned equivalence fails. In particular, if Fj (x) is a
concave function over K, ∀j ∈ {1, . . . , n}, but F(x)

is not affine, then monotonicity on K is necessary,
but not sufficient for F(x)′x to be a convex function

over K. For example, for n = 1, K = [0, ∞), and
F(x)=−e−x +1, F(x) is concave and monotone over
K, but F(x) · x is concave for x�2.

We summarize the above discussion of the affine
case in the following corollary.

Corollary 3. Suppose that K is the non-empty poly-
hedron given by (4), and that F(x) = Gx + h, with
G 	 0, but not necessarily symmetric. Then, system
(5) is a set of quadratic constraints defining a convex
feasible region and MP (8) is a convex LCQP.

Similarly, for the setting of VI(K, F) with K ⊆ Sn+,
we have the following analogous result.

Corollary 4. Suppose that K is given by (12), and that

F(X) =
n∑

i=1

n∑
j=1

Xij Gij + H,

where H ∈ Mn,n, and Gij ∈ Mn,n, for i, j ∈
{1, . . . , n}. Suppose that G 	 0, where

G =
[
vec(G11), vec(G12), . . . , vec(G1n), . . . ,

vec(Gn1), . . . , vec(Gnn)
]

,

and vec(Gij ) denotes the column vector obtained by
stacking the row vectors of the matrix Gij one on top
of another. Then, MP (13) is convex, with a quadratic
objective.

Proof. The result follows, since F(X) = vec(X)′G
vec(X) + vec(H). �

Our VI reformulation sheds additional light on VI
complexity analysis, but, more importantly, it extends
the applicability of commercial, single-level optimiza-
tion solvers to a larger class of VIs. In contrast, the VI
literature has focused on developing specialized itera-
tive algorithms for these problems. Since commercial
optimization packages for single-level problems are
available, supported, and refined through practice to a
greater extent than are solvers specific to VIs, we be-
lieve that our reformulation has practical applicability.
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2.4. Reformulation of an MPEC as a single-level
optimization problem

Let SOL(K, F) denote the solution set of VI(K, F).
Using this notation, the MPEC is the following opti-
mization problem whose constraints include a param-
eterized VI:

min
u∈Rn1 ,x∈Rn2

g(u, x)

s.t. (u, x) ∈ S

x ∈ SOL(K(u), F(u; ·)). (15)

K(u) denotes a feasible region parameterized by the
vector u of so-called upper-level decision variables,
and F(u; ·) denotes a function, which is also param-
eterized by u and whose values are elements in Rn2 .
Analogously, x is called the vector of lower-level de-
cision variables. In this section, we extend the VI re-
formulation results from Section 2.1 to MPECs.

In general, the exact value of u may determine not
only the coefficients in the constraints defining K(u)

but also the number of constraints. Let us focus on
instances in which u affects only the coefficients in the
constraints, i.e., cases in which the following condition
holds.

Condition 1. ∀u ∈ Rn1 such that ∃x ∈ Rn2 with
(u, x) ∈ S, ∃m < ∞ for which K(u) is a nonempty
polyhedron given in standard form by

K(u) = {x ∈ Rn2 | [A(u)]x = b(u), x�0},

with [A(u)] ∈ Rm×n2 and b(u) ∈ Rm.

Theorem 1 yields the following corollary.

Corollary 5. Consider MPEC (15) satisfying Condi-
tion 1. Then, (u∗, x∗) is an optimal solution of MPEC
(15) iff ∃�∗ ∈ Rm such that (u, x, �) = (u∗, x∗, �∗) is
an optimal solution of the following problem:

min
u,x,�

g(u, x)

s.t. (u, x) ∈ S

F(u; x)′x = b(u)′�
[A(u)]x = b(u)

x�0

[A(u)]′��F(u; x). (16)

The fact that the MPEC with polyhedral K(u)

may be converted into a single-level optimization
problem is well known in the literature (see, e.g.,
[20]). The classical single-level MPEC reformulation
is KKT-based, in that it dictates replacement of the
VI constraint with its KKT conditions. In contrast,
the derivation method used in Corollary 5 and in the
proof of Theorem 1 is based on LP duality. Espe-
cially when K(u) is not, without augmentation of
the lower-level space of variables, in standard form,
the duality-based reformulation may be appealing. In
particular, although the two approaches are closely re-
lated, unlike its KKT-based analog, the duality-based
reformulation does not give rise to complementarity
constraints in the resulting single-level optimization
equivalent of the MPEC. In some settings, this lack of
complementarity constraints may facilitate identifica-
tion of convexity of the MPEC reformulation and may
provide greater flexibility for further manipulation of
this reformulation.

In general, certifying the convexity of MPEC refor-
mulation (16) is a bit more involved than doing the
same for VI reformulation (5). Specifically, if K(u)

and F(u; ·) truly depend on u, in general, the refor-
mulation will be non-convex. For example, if the de-
pendence on u is linear, then reformulation (16) will
contain terms involving products of the upper- and
lower-level decision variables. Otherwise, in the sim-
ple case in which K(u) and F(u; ·) are constant with
respect to all feasible u, reformulation (16) is convex
if S is convex, if the upper-level objective g is convex,
and if, ∀u feasible for the MPEC, K(u) and F(u; ·)
satisfy the conditions of Theorem 3.

Lastly, we note that, since the MPEC is an opti-
mization problem with a parameterized VI constraint,
robust optimization subsumes the MPEC, just as it en-
compasses the VI.

2.5. Examples admitting reformulation as convex
programs

Returning to the topic of VIs, in this section, we il-
lustrate our VI reformulation results with examples of
VI(K, F) satisfying the conditions of Theorem 3. Re-
call that these conditions are sufficient for the convex-
ity of the VI reformulations given in Section 2.1. As
noted in that section, if F(x) is affine, then VI(K, F)

is always equivalent to an LCQP, even if JF(x) is
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asymmetric. Moreover, this LCQP is convex as long
as F(x) is monotone. Since it is obvious that there
exist such instances involving monotone F(x) with
asymmetric JF(x), we give examples only of instances
with nonlinear F(x).

Example 1. Let K ⊆ Rn+ be a bounded polyhedron.
Let F(x) = H(x) + Gx + h, where G is asymmetric,
Hj(x)= ln xj , j =1, . . . , n, G 	 0. Because F is con-
tinuous and K is compact and convex, this VI prob-
lem is guaranteed to possess a solution (see, e.g., [12,
Corollary 2.2.5]).

Example 2. Consider the same setting as Example 1,
but with Hj(x) = √

xj , j = 1, . . . , n.

Example 3. Finally, consider any K ⊆ R2+\{(0, 0)}
such that ( 1

3 , 1
3 ) ∈ K . Let

F(x) =
(

ln (2x1 + x2)

ln (x1 + 2x2)

)
.

Clearly, ( 1
3 , 1

3 ) is a solution of this VI. By inspection,
it is not obvious that this example satisfies the suf-
ficient conditions of Theorem 3. However, one may
symbolically compute, e.g., using MAPLE, the eigen-
values of the Hessians of F1(x), F2(x), and F(x)′x. In
doing so, it becomes clear by inspection that, because
K ⊆ R2+, the signs of these eigenvalues over K imply
the concavity of Fj (x), j ∈ {1, 2}, and the convexity
of F(x)′x over K (see, e.g., [6, Proposition B.4]).

2.6. Connection with the classical gap function

In this section, we consider a connection between
our approach and the merit-function approach, the lat-
ter of which induces bilevel programming reformula-
tions of VIs. Recall the classical primal gap function,

�gap(x)� sup
y∈K

F(x)′(x − y).

Despite its simplicity, the VI literature on merit func-
tions has deprecated the use of this gap function in
practice, because it may not be differentiable. Until
1989, the VI community regarded as an open question
the issue of whether there exists a continuously dif-
ferentiable optimization problem that equivalently re-
formulates VI(K, F). In that year Auchmuty [2], and

independently and soon thereafter Fukushima [14],
proposed the regularized gap function, which altered
the classical gap function in a way that guaranteed
continuous differentiability.

Interestingly, for K given by (4), our reformulation
of VI(K, F) as equivalent optimization problem (8) is
in fact equivalent to minx∈K �gap(x). To see why, let
KD(x) denote the feasible region of DLP(x), as given
by (7). Indeed, since K is closed,

�gap(x) = F(x)′x − min
y∈K

F(x)′y

= F(x)′x − max
�∈KD(x)

b′�

= min
�∈KD(x)

[
F(x)′x − b′�

]
.

Recall that the objective and constraint functions
of reformulation (8) are continuously differentiable
as many times as F(x) is. Accordingly, the classical
primal gap function does in fact induce a continuously
differentiable merit-type function, but it is one that is
defined over a modestly higher-dimensional space.
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